The Hunt for the Higgs

Patrick (Paddy) Fox Theory Group

lhe Hunt for the Higgs

Patrick (Paddy) Fox Theory Group

What's all the fuss about?

H

PERIODIC TABLE OF THE ELEMENTS

Electron

The building blocks of nature

(the Standard Model)

I GeV = mass of proton

The building blocks of nature

(the Standard Model)

I GeV = mass of proton

approx. mass

of gold atom

How the Z boson* got its mass

symmetry: not just a magazine.

Symmetries of nature tell us about interactions and particles

But, they predict all the gauge bosons are massless, like the photon...a very different world from our's

Spontaneous symmetry breaking, the **Higgs mechanism**

*and all elementary particles

The other men (Kibble, Guralnik, Hagen, Englert, Brout)

The man

Spontaneous symmetry breaking

Laws of nature are symmetric, our world has that symmetry

hidden. Broken symmetry

Spontaneous symmetry breaking

Laws of nature are symmetric, our world has that symmetry hidden. Broken symmetry

The return of the aether

The Higgs has a "vacuum expectation value" (vev) Coupling of other particles to the Higgs (and its vev) give them mass

The bigger the mass the bigger the coupling

 ϕ_2

The Higgs boson

Sole remaining piece of the Standard Model

Guaranteed to see it, or something like it, at Tevatron or LHC

Couples to mass -- determines how it is made and how to look for it

Couples to mass -- determines how it is made and how to look for it

Couples to mass -- determines how it is made and how to look for it

Couples to mass -- determines how it is made and how to look for it

"amount of data" $\sim 0.5 \times \text{what has been collected so far}$ Tevatron Run II Preliminary, $\langle L \rangle = 5.9 \text{ fb}^{-1}$ CL Limit/SM EP Exclusion Tevatron Expected Observed ±1σ Expected ±2σ Expected 1 July 19, 2010 130 140 150 160 170 $m_H(GeV/c^2)$

Q: How do you search for the Higgs boson? (hint: $E=mc^2$)

The Higgs is heavy, lives for a very short time, doesn't exist in nature

Need to look at very small

distances

Q: How do you search for the Higgs boson? (hint: $E=mc^2$)

The Higgs is heavy, lives for a very short time, doesn't exist in nature

Need to look at very small

Experimental physicist in the lab

distances

Q: How do you search for the Higgs boson?

Searching for the Higgs boson

Higgs production is a rare process
Worse yet, its decay products can look like mundane events

Searching for the Higgs boson

Higgs production is a rare process
Worse yet, its decay products can look like mundane events

CERN and Fermilab - competitive collaboration

Ultimately LHC will have ~7x Tevatron's energy Aids in discovering Higgs (and other new physics) Tevatron collides pp and LHC collides pp

Two machines complementary in approach and capabilities

Discovering the Higgs, and proving it is the Higgs is a long process, multiple sources of information are key

"Watching CERN discover the Higgs would be like watching your mother-in-law drive over a cliff......

Leon Lederman

CERN and Fermilab - competitive collaboration

Ultimately LHC will have ~7x Tevatron's energy Aids in discovering Higgs (and other new physics) Tevatron collides pp and LHC collides pp

Two machines complementary in approach and capabilities

Discovering the Higgs, and proving it is the Higgs is a long process, multiple sources of information are key

"Watching CERN discover the Higgs would be like watching your mother-in-law drive over a cliff......

...in your Mercedes!"

Leon Lederman

